Finite element approximation for the dynamics of fluidic two-phase biomembranes
نویسندگان
چکیده
Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn–Hilliard model on an evolving hypersurface coupled to Navier–Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn–Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element approximation is introduced and, with the help of a fully discrete method, several phenomena occurring for two-phase membranes are computed.
منابع مشابه
Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملFinite element approximation for the dynamics of asymmetric fluidic biomembranes
We present a parametric finite element approximation of a fluidic membrane, whose evolution is governed by a surface Navier–Stokes equation coupled to bulk Navier–Stokes equations. The elastic properties of the membrane are modelled with the help of curvature energies of Willmore and Helfrich type. Forces stemming from these energies act on the surface fluid, together with a forcing from the bu...
متن کاملFinite element approximation of a sharp interface approach for gradient flow dynamics of two-phase biomembranes
A finite element method for the evolution of a two-phase membrane in a sharp interface formulation is introduced. The evolution equations are given as an L2– gradient flow of an energy involving an elastic bending energy and a line energy. In the two phases Helfrich-type evolution equations are prescribed, and on the interface, an evolving curve on an evolving surface, highly nonlinear boundary...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملAdaptive Spline-based Finite Element Method with Application to Phase-field Models of Biomembranes
Adaptive Spline-based Finite Element Method with Application to Phase-field Models of Biomembranes by Wen Jiang Department of Mechanical Engineering and Materials Science Duke University Date: Approved: John Dolbow, Supervisor
متن کامل